Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2021

FTA: A Feature Tracking Empirical Model of Auroral Precipitation

The Feature Tracking of Aurora (FTA) model was constructed using 1.5 years of Polar Ultraviolet Imager data and is based on tracking a cumulative energy grid in 96 magnetic local time (MLT) sectors. The equatorward boundary, poleward boundary, and 19 cumulative energy bins are tracked with the energy flux and the latitudinal position. With AE increasing, the equatorward boundary moves to lower latitudes everywhere, while the poleward boundary moves poleward in the 2300–0300 MLT region and equatorward in other MLT sectors. This results in the aurora getting wider on the nightside and becoming narrower on the dayside. The peak intensity of the aurora in each MLT sector is almost linearly related to AE, with the global peak moving from pre-midnight to post-midnight as geomagnetic activity increases. Ratios between the Lyman-Birge-Hopfield-long and -short models allow the average energy to be calculated. Predictions from the FTA and two other auroral models were compared to the measurements by the Defense Meteorological Satellite Program Special Sensor Ultraviolet Spectrographic Imagers (SSUSI) on March 17, 2013. Among the three models, the FTA model specified the most confined patterns with the highest energy flux, agreeing with the spatial and temporal evolution of SSUSI measurements better and predicted auroral power (AP) better during higher activity levels (SSUSI AP \textgreater 20 GW). The Fuller-Rowell and Evans (1987) and FTA models specified very similar average energy compared with SSUSI measurements, doing slightly better by ∼1 keV than the OVATION Prime model.

Wu, Chen; Ridley, Aaron; DeJong, Anna; Paxton, Larry;

Published by: Space Weather      Published on:

YEAR: 2021     DOI: 10.1029/2020SW002629

Auroral Precipitation Model; cumulative energy bins; data-model comparisons; M-I coupling; statistical analyses

2013

Auroral Precipitation Model and its applications to ionospheric and magnetospheric studies

Based on statistical treatment of DMSP F6 and F7 spacecraft observations, an interactive Auroral Precipitation Model (APM) parameterized by magnetic activity has been created (available athttp://apm.pgia.ru/). For a given level of magnetic activity the model yields a global distribution of electron precipitation and planetary patterns of both average electron energy and electron energy flux in different precipitation zones. Outputs of the model were used to determine the basic variables of the magnetosphere, such as boundary location and the area of the polar cap, magnetic flux transferred from the dayside magnetosphere into the tail, global precipitation power realized by different types of precipitation and others. The model predicts an increase in the polar cap area from about 6.3\texttimes106\ km2 to 2.0\texttimes107\ km2, in the magnetic flux from 390\ MWb to 1200\ MWb, and in the global precipitation power from 3.4\ GW to 188.0\ GW, when the magnetic activity changes from silence (null AL and Dst) to significant disturbance (AL=-1000\ nT, Dst=-200\ nT). The use of dayside auroral observations as an input for APM provides an opportunity for continuous monitoring of magnetospheric conditions. Two time intervals on Dec. 27, 2000, and Dec. 12, 2004, of dayside auroral observations with the meridian scanning photometer at Barentsburg (Spitsbergen) were selected to demonstrate derivation of magnetospheric variables with APM. It is shown that the values of the AL index derived from optical observation appear in a reasonable agreement with those published by WDC.

Vorobjev, V.G.; Yagodkina, O.I.; Katkalov, Yu.V.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 09/2013

YEAR: 2013     DOI: 10.1016/j.jastp.2013.05.007

AL and Dst indexes; Auroral Precipitation Model; Dayside aurorae; Magnetic storm



  1